APPENDIX C – DEVELOPMENT OF WATER QUALITY-BASED EFFLUENT LIMITS The calculations for water quality-based effluent limits are done according to procedures in Chapter 5 of EPA's Technical Support Document for Water Quality-Based Toxics Control (TSD). The spreadsheets following this document contain the calculations for water quality-based limits for the Red Dog Port Site Outfalls 001 and 005. ## Step 1 – Determine the Wasteload Allocations (WLAs) for each parameter WLAs define the allowable concentration of pollutant in the effluent. The water quality criteria are converted to WLAs for the receiving water based on the following mass balance equation: WLA = $(C_r - C_b)$ * dilution where, $C_{\rm r}$ Criteria that cannot be exceeded at the edge of the mixing zone Background concentration of pollutant C_{h} Designated mixing zone Dilution ## Step 2 – Determine Long Term Averages The acute and chronic WLAs are converted to Long Term Averages (LTA_{acute} and LTA_{chronic}) using the following equations: $LTA_{acute} = WLA_{acute} * e[0.5\sigma^2 - z\sigma]$ where, σ^2 = $ln(CV^2 + 1)$ CV = Coefficient of variation of the effluent data z = 2.326 for the 99th percentile probability basis $LTA_{chronic} = WLA_{chronic} * e[0.5\sigma^2-z\sigma]$ where, σ^2 = $ln(CV^2/4 + 1)$ CV = Coefficient of variation of the effluent data z = 2.326 for the 99th percentile probability basis #### Step 3 – Determine Average Monthly and Maximum Daily Limits To protect a waterbody from both acute and chronic effects, the more limiting of the calculated LTA_{acute} and LTA_{chronic} is used to derive the effluent limitations. The TSD recommends using the 95th percentile for the Average Monthly Limit (AML) and the 99th percentile for the Maximum Daily Limit (MDL). To derive the MDL and the AML, the following calculations are used: MDL = LTA * $$e[z\sigma-0.5\sigma^2]$$ where, $$\sigma^2 = \ln(CV^2 + 1)$$ σ^2 = $ln(CV^2 + 1)$ CV = Coefficient of variation of the effluent data z = 2.326 for the 99th percentile probability basis AML = LTA * $$e[z\sigma-0.5\sigma^2]$$ where, $$\sigma^2$$ = $\ln(CV^2/n + 1)$ CV = Coefficient of σ = Number of sar σ = 1.645 for the σ Coefficient of variation of the effluent data CV Number of sampling events required in permit per month 1.645 for the 95th percentile probability basis # Step 4 – Compare Aquatic Life and Technology-based Effluent Limits Compare water quality-based (aquatic life) and technology-based effluent limits and put the more stringent limits in the permit. | | Dilution (D
chronic mi | | the inverse | of the percer | | | e edge of the ac | | | | Waste L | | ation (WLA | | Term A | verage | | St | | | or permit | imit | | |------------------------|---------------------------|----------------------------|-------------------------------------|---------------------------------|------------------------------|---------------------------------------|---|--------------------------------------|---------------------------------|-----------------------|--------------------|----------------|------------|-------|-------------------------------|------------------------|-----------------|------------------------|------------------------|------------------------|---------------------------------|------|--| | | | | | Permit Limit Calculation Summar | | | | | ry | | (LTA) Calculations | | | | | | | calculation | | | | | | | | Acute
Dil'n
Factor | Chronic
Dil'n
Factor | Metal
Criteria
Translat
or | Translat or | Ambient
Concentr
ation | Water
Quality
Standard
Acute | Water
Quality
Standard
Chronic | Average
Monthly
Limit
(AML) | Maximum
Daily Limit
(MDL) | Limits used in permit | WLA
Acute | WLA
Chronic | | | LTA
Coeff.
Var.
(CV) | LTA
Prob'y
Basis | Limiting
LTA | Coeff.
Var.
(CV) | AML
Prob'y
Basis | MDL
Prob'y
Basis | # of
Samples
per
Month | | | | PARAMETER | | | Acute | Chronic | ug/L | ug/L | ug/L | ug/L | ug/L | | ug/L | ug/L | ug/L | ug/L | decimal | decimal | ug/L | decima | decimal | decimal | n | | | | otal Residual Chlorine | 92 | 140 | | | | 13.00 | 7.50 | 502.1 | 1196.0 | TB | 1196 | 1050.00 | 384.0 | 553.8 | 0.60 | 0.99 | 384.0 | 0.60 | 0.95 | 0.99 | 12.00 | 1.00 | | | | | | | | | | | | ТВ | = Technology B | ased | | | | | | | | | | 1 | # 4/25/2005 2:30 PM APPENDIX C - OUTFALL 005 NPDES Permit No. AK-004064-9 AppxC.xls WATER QUALITY BASED PERMIT LIMIT CALCULATIONS | | Dilution (Dil'n) factor is the inverse of the percent effluent concentration at the edge of the acute or
chronic mixing zone. | | | | | | | | Waste | Load Al | | | | g Term | | Statistical variables for permit limit | | | | limit | This sprea | | | | | | |---------|--|-----------------|-------------------------|---------------------------|---------------------------|---------------------------|-----------------------------|------------------------|---------------------|------------------|----------------------|------------------------|----------------------|------------------------|---------------------------|--|-------------------------|-------------------------|----------------------------|-----------------|-----------------|-------|-----------------------------------|------------|--|--| | | | | | | l | Permit Lin | nit Calculat | ion Sumn | nary | | | Avera | ge (LTA |) Calcula | ations | | | | | calculation | on | | calculates water | | | | | | Acute | Chronic | Metal
Criteria | Metal
Criteria | Ambient | Water
Quality | Water
Quality | Average
Monthly | Maximum Daily Limit | | | | | | LTA
Coeff. | LTA | | Coeff. | AML | | # of
Samples | | quality bas
limits base | d on the | | | | RAMETER | Dil'n
Factor | Dil'n
Factor | Translat
or
Acute | Translat
or
Chronic | Concentr
ation
ug/L | Standard
Acute
ug/L | Standard
Chronic
ug/L | Limit
(AML)
ug/L | | | WLA
Acute
ug/L | WLA
Chronic
ug/L | LTA
Acute
ua/L | LTA
Chronic
ug/L | Var.
c (CV)
decimal | Prob'y
Basis
decimal | Limiting
LTA
ug/L | Var.
(CV)
decimal | Prob'y
Basis
decimal | Prob'y
Basis | per
Month | | two value steady state model. The | | | | | Cadmium | 92 | 140 | 0.994 | 0.994 | 1.09 | 40.00 | 8.80 | 811.8 | 1957.1 | Technology Based | 3581 | 1080.49 | 804.4 | 437.0 | 0.90 | 0.99 | 437.0 | 0.90 | 0.95 | 0.99 | 4.00 | 0.994 | procedure
calculation | | | | | Mercury | 92 | 140 | 0.850 | 0.850 | 0.15 | 1.80 | 0.94 | 56.5 | 178.8 | Technology Based | 152 | 110.75 | 15.9 | 19.2 | 2.40 | 0.99 | 15.9 | 2.40 | 0.95 | 0.99 | 4.00 | 0.850 | done per t | | | | | Lead | 92 | 140 | 0.951 | 0.951 | 3.90 | 210.00 | 8.10 | 360.9 | 1098.4 | Technology Based | | | 2300.5 | 126.7 | 1.89 | 0.99 | 126.7 | 1.89 | 0.95 | 0.99 | 4.00 | 0.951 | Technical | | | | | Zinc | 92 | 140 | 0.946 | 0.946 | 56.75 | 90.00 | 81.00 | 1471.9 | 3293.6 | Technology Based | 3116 | 3451.75 | 814.4 | 1572.6 | 0.76 | 0.99 | 814.4 | 0.76 | 0.95 | 0.99 | 4.00 | 0.946 | Document | Quality-ba | Control, U.
March, 199 | (EPA/505/ | [(L1 7/303/ | 2-30-001), |